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Abstract We investigate numerically the chaotic
dynamics of optically pumped quantum-dot (QD) spin
vertically coupled surface emitting lasers (VCSELs)
accounting for both ground state (GS) and excited state
(ES) energy levels through the elaboration of the spin-
flip model (SFM). The intensity dynamics associated
with ES and GS transitions are studied by means of the
largest Lyapunov exponent (LLE) and stability maps in
terms of operational parameters (pump ellipticity and
pump intensity), aswell asmaterial parameters (ES–GS
intraband relaxation rate, spin relaxation rate and bire-
fringence), are produced. It is established that although
both ES andGS dynamics exhibit the same kind of non-
linear dynamics for a given set of control parameters,
the ES and GS dynamics are weakly uncorrelated. This
can be the basis for the realization of various function-
alities including reservoir computing.
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1 Introduction

The interest in polarization dynamics in spin-vertical
cavity surface emitting lasers (VCSELs) has increased
in recent years [1–5]. In these devices, it is possible
to control the output optical polarization by inject-
ing spin-polarized electrons. Spin-polarized VCSELs
can exhibit a plethora of nonlinear phenomena, rang-
ing from oscillatory operation (single, period doubling,
etc.) all the way to chaos, without the requirement for
an external feedback perturbation or optical injection
[6–8]. It is the spin property of the injected carriers and
the coupling with the circularly polarized optical field
that gives rise to nonlinear phenomena.

Recently, ultrafast polarization dynamics [9] and
in particular polarization frequencies in spin VCSELs
of 200 GHz or higher [10] have paved the way for
energy efficient ultrafast optical communication. Addi-
tionally, attention in the field is fueled by the poten-
tial of VCSELs for neuromorphic photonics [11,12],
as well as secure communications [5,13]. Retaining
the spin polarization during the injection process it is
indeed a demanding yet addressable task. For this either
spin-injecting electrical contacts [14] or optical pump-
ing [15–17] have been used.

The operation of spin-polarizedVCSELs can be the-
oretically studied in the context of the spin-flip model
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(SFM) [18] which describes in a simple and intuitive
manner complex processes yielding the set of rate equa-
tions (REs) that are not computationally demanding. In
this contextweendupwith four level coupled rate equa-
tions for quantum wells (QWs) or six for quantum dots
(QDs) [17,19]. According to SFM, in the absence of an
external magnetic field, the oscillatory operation of the
spin-polarized VCSELs is the outcome of the competi-
tion between spin relaxation processes (γs), dichroism
(γa) and birefringence (γp) [19].

The spin-polarized VCSEL literature is monopo-
lized with theoretical and experimental works on QW
spin VCSELs (see, e.g., [20–23]), while there are a few
accounts of QD spin-polarized VCSELs [24,25]. QD
spin VCSELs provide additional degrees of freedom
for controlling polarization dynamics and these include
the interband relaxation rates [wetting layer (WL) to
ground state (GS)] [6], modified gain parameter (h)

and variable linewidth enhancement factor (α) [25,26].
In [27], the SFM model was modified for the case of
QD spin VCSELs and the spin dynamics were studied
initially by means of the largest Lyapunov exponent
(LLE) and elaborated in [6] with bifurcation theory
(BT). More specifically, in [6] a detailed study of the
dynamics of spin-polarized QD-VCSELs is presented
where the different dynamical regions and key bifur-
cations are mapped using the modified SFM model.
The findings of [6] have verified the role of key design
parameters specific to the QDs, i.e., the capture rate
from WL to QD ground state (γ0), the gain coefficient
(h) and the α-factor in tuning the dynamical character-
istics. The majority of published works to date on QD
spin lasers account only for the effects of WL and GS
energy levels. [7,28,29]

Noticeably, a study of the effects of ES lasing is
missing from the literature. Hence, a study of ES las-
ing on the polarization characteristics is now due for
progressing present understanding on key parameter
effects (material and operational) and control of spin-
polarized VCSELs. This formulates the scope of the
present work; here we modify further the SFM QD
spin VCSEL model to include the ES and use this to
study numerically the dynamics of both fields associ-
ated with GS and ES transitions. The rest of the paper is
organized as follows: in Sect. 2, we present the modifi-
cation of the SFMmodel to account for ES and the nor-
malization of the SFM rate equations is analyzed. The
model is numerically studied in Sect. 3 and the relevant
results are discussed. In Sect. 4, we discuss potential

Fig. 1 Schematic representation of the energy levels (WL, ES,
GS, VB) and transitions of carriers in the 8-level system used for
the SFM in the QD spin-VCSEL

applications of the proposed structure. We summarize
the main findings of our work in Sect. 5.

2 SFM model accounting for ES

2.1 Modification of the SFM model

The starting point of our analysis is the QD spin-
VCSEL model developed in [6]. The model of [6]
accounts only for WL and GS energy levels.

We introduce the ES level in a similar manner as
commonly done for conventional (i.e., non spin) QD
systems [30], but here the carriers and fields related to
WL, ES and GS are spin resolved thus producing a 8-
level rate equation system. In the following, the upward
carrier transitions are neglected [27]. The spin resolved
energy diagram of QD system along with the relevant
transitions used in this study is shown in Fig. 1. The ES
is fourfold degenerate and theGS is twofold degenerate
[30]. The spin-polarized carriers, spin-up (−) and spin-
down (+), are generated in the WL via optical pump-
ing. The capture rate to the ES level is γ0. The spin-
polarized carriers at the ES relax at the spin-up(down)
GS level with an intra-dot relaxation rate γ21. Intra-dot
spin-relaxation process can occur from spin-up(down)
ES to spin-down(up) ES as well as from spin-up(down)
GS to spin-down(up) GS at a rate γs . Lasing occurs
via transitions from the ES or GS, to the valence band
(VB) emitting right (E+

ES, E
+
GS) and left (E−

ES, E
−
GS)

circularly polarized electric fields at two distinct wave-
lengths. The right and left circularly polarized fields
are coupled via birefringence rate γp and dichroism
γa . The above physical process is described by a set
of REs, consisting of six equations for the dynamics
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of carriers ( f ±
WL , f ±

ES, f ±
GS) and four equations for the

dynamics of the electric field amplitudes (E±
GS, E

±
ES).

The complete set of REs describing the modified SFM
model reads as:

d f ±
WL

dt
= I±

eNWL
− γ0 f

±
WL(1 − f ±

ES)

−γn f
±
WL ∓ γs( f

+
WL − f −

WL) (1)

d f ±
ES

dt
= 1

4

NWL

NQD
γ0 f

±
WL(1 − f ±

ES) − γn f
±
ES

−γ21 f
±
ES(1 − f ±

GS)

−vg�2a(2 f ±
ES − 1)|E±

ES|2 ∓ γs( f
+
ES − f −

ES) (2)

d f ±
GS

dt
= 2γ21 f

±
ES(1 − f ±

GS) − γn f
±
GS

−vg�a( f ±
GS − 1)|E±

GS|2 ∓ γs( f
+
GS − f −

GS) (3)

dE±
GS

dt
= k[h1(2 f ±

GS − 1) − 1](1 + iα)E±
GS

−(γa + iγ p)E∓
GS (4)

dE±
ES

dt
= k[h2(2 f ±

ES − 1) − 1](1 + iα)E±
ES

−(γa + iγ p)E∓
ES . (5)

Here, f ±
ES, f ±

GS describe, respectively, the occupa-
tion probability of ES andGS energy levels. The ampli-
tude of the electric field is, respectively, denoted by
E±
ES, E

±
GS for transitions involving ES and GS levels.

The dichroism rate is γa , e is the electron charge, NWL

denotes the density of states in the WL and NQD the
density of dots per volume, a is the differential gain
and α is the linewidth enhancement factor. The cavity
loss rate k is defined as k = (2τp)−1, where τp is the
photon lifetime. The normalized gain coefficient h1 for
GS transitions is defined by h1 = vg�aNQDτp, where
vg is the group velocity and � is the optical confine-
ment factor. For ES transitions, the gain coefficient is
h2 = 2h1 [31].

2.2 Normalization of the modified SFM

For the normalization of the system of REs, we intro-
duce a change in variables as follows:

n±
ES = h2(2 f

±
ES − 1) (6)

n±
GS = h1(2 f

±
GS − 1) (7)

n±
WL = h2

NWL

NQD
f ±
WL (8)

E±
s,ES = E±

ES

√
vg�2a

γn
(9)

E±
s,GS = E±

GS

√
vg�a

γn
(10)

η± = I± − I±
GS,th

I±
ES,th − I±

GS,th

(11)

where η± is the normalized pumping term. The car-
rier injection at GS and ES threshold is, respectively,
denoted by I±

GS,th and I±
ES,th . I± is the value of

the injected spin-polarized current density. ES lasing
occurs for η± > 1, i.e., for I > I±

ES,th . The normal-

ized polarized field from the ES is E±
s,ES and from the

GS is E±
s,ES . The normalized carrier populations occu-

pying energy levels WL, ES and GS are denoted by
n±
WL , n±

ES, n
±
GS , respectively. The normalization pro-

cess follows that of [27] except for the definition of the
normalized pumping term η± which in [27] is defined
as a function of the carrier injection components at
threshold and transparency. The occupation probabil-
ity of the ES at GS threshold for linear polarization can
be obtained by applying the GS threshold condition
h1(2 f

±
GS − 1) = 1 to the steady-state solution of (3):

f ±
ES|GS,th = γn

2γ21

h1 + 1

h1 − 1
. (12)

Likewise, substituting expression (12) in (2) for the
steady state yields the WL occupation probability at
GS threshold:

f ±
WL |GS,th = 4

1

γ0

NQD

NWL

2γ21(h1 − 1)

2γ21(h1 − 1) − γn(h1 + 1)[
γn

2γ21

h1 + 1

h1 − 1
(γn + γ21

h1 − 1

2h1
)

]
. (13)

The injection current at GS threshold is obtained from
the steady-state solution of (1)

I±|GS,th

= 4eANQD

[
1 + γn

γ0

2γ21(h1 − 1)

2γ21(h1 − 1) − γn(h1 + 1)

]
(14)

where

A = γn

2γ21

h1 + 1

h1 − 1

(
γn + γ21

h1 − 1

2h1

)
(15)

In the expression of (14), there is no spin dependence,
hence the superscript ± is dropped on the threshold
pumping terms IGS,th from here on. The thresholds for
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simultaneous ES and GS lasing are obtained by setting
(4) and (5) equal to zero:

f ±
GS|th = h1 + 1

2h1
(16)

f ±
ES|th = h2 + 1

2h2
. (17)

Then, the steady-state solution of (2) by substituting
(16) and (12) yields the occupation probability for the
WL when both ES and GS lase:

f ±
WL |ES,th = 4

1

γ0

NQD

NWL

2h2
h2 − 1

×
[
h2 + 1

2h2

(
γn + γ21

h1 − 1

2h1

)]
. (18)

Finally, the steady-state solution of (1) gives the value
of the injection current at the threshold of the excited
state:

I±|ES,th = 4eBNQD

[
1 + γn

γ0

2h2
(h2 − 1)

]
(19)

where

B = h2 + 1

2h2

(
γn + γ21

h1 − 1

2h1

)
(20)

In the following, as for (14), we drop the superscript
± for the threshold pumping terms IES,th . Employing
(6)–(11) along with (14) and (19) the normalized form
of modified SFM REs (equations (1)–(5)) is:

dn±
WL

dt
= h2

e
[η±(IES,th − IGS,th) + IGS,th]

−γ0n
±
WL

(
h2 − n±

ES

2h2

)
− γnn

±
WL ∓ γs(n

+
WL − n−

WL )

(21)

dn±
ES

dt
= 1

4

(
h2 − n±

ES

h2

)
− γn(h2 + n±

ES) − γ21(h2 + n±
ES)

×
(
h1 − n±

GS

2h1

)
− 2γnn

±
ES |E±

s,ES |2 ∓ γs(n
+
ES − n−

ES)

(22)

dn±
GS

dt
= γ21

(
h2 + n±

ES

h2

)
(h1 − n±

GS) − γn(h1 + n±
GS)

−2γnn
±
GS |E±

s,GS |2 ∓ γs(n
+
GS − n−

GS) (23)

dE±
s,GS

dt
= k(n±

GS − 1)(1 + iα)E±
s,GS

−(γa + iγ p)E±
s,GS (24)

dE±
s,ES

dt
= k(n±

ES − 1)(1 + iα)E±
s,ES

−(γa + iγ p)E±
s,ES . (25)

3 Results and discussion

The impact of the ES on the chaotic dynamics of QD
spin-VCSELs is studied with the numerical solution
of equations (21)–(25). The dynamics of the device
is mapped into the P-η plane where P is the pump
ellipticity,

P = η+ − η−

η+ + η−
and η is the total pump intensity.

η = η+ + η− (26)

The pair P ,η can control dynamically the stability of
the emitted polarized fields [32–34] and it is commonly
used for the investigation of the nonlinear dynamics of
spinVCSELs.We identify and quantify chaotic nonlin-
earities bymeans of the LLEmethod. The LLEmethod
has been applied previously for the analysis of injection
locked lasers [31] andQD spinVCSELs accounting for
WL and GS only [6]. A concise review of the theoreti-
cal treatment and numerical evaluation of the LLE can
be found in [35]. Here, we summarize the main aspects
of the method. The Lyapunov exponents are measures
of the average rate of growth (or shrinking) of small
perturbations to the solutions of a dynamical system.
The value of the LLE is an indicator of the chaotic or
regular nature of orbits in the phase space of the dynam-
ical system, i.e., the time evolution of the solutions of
the RE (21)–(25). In practice, the LLE is computed
by following in time the evolution of two nearby orbits
characterized by a small initial distance d0 (of the order
of 10−8). After evolving the two orbits for one inte-
gration time step τ , the new distance d1 between the

evolved orbits is measured and the quantity ln
(
d1
d0

)
is

calculated. This process is applied repeatedly and after
N time steps the value of the LLE is estimated as

LLE = 1

Nτ

N∑
j=1

ln

(
d j

d j−1

)
(27)

(see [35] for more details on the practical computation
of the LLE). Positive values of the LLE correspond to
chaotic behavior, while negative values indicate stable
solutions. Zero values of the LLE may be associated
with periodic solutions and limit cycles. The LLE is
considered as one of the most efficient ways to identify,
and at the same time quantify, chaos for a dynamical
system.
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Given that the QD system under study can exhibit
simultaneously two-state lasing, it is instructive to sep-
arate the trajectories for GS and ES transitions. The
related LLEs are computed for the fields E±

s,GS and

E±
s,ES by, respectively, considering the distances dGS

and dES :

dES
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(nGS,+
a − nGS,+

b )2 + (nGS,−
a − nGS,−

b )2+
(nES,+

a − nES,+
b )2 + (nES,−

a − nES,−
b )2+

(nWL ,+
a − nWL ,+

b )2 + (nWL ,−
a − nWL ,−

b )2

Re((EES,+
a − EES,+

b ))2

+Im((EES,+
a − EES,+

b ))2

+Re((EES,−
a − EES,−

b ))2

+Im((EES,−
a − EES,−

b ))2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

(28)

dGS
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(nGS,+
a − nGS,+

b )2 + (nGS,−
a − nGS,−

b )2+
(nES,+

a − nES,+
b )2 + (nES,−

a − nES,−
b )2+

(nWL ,+
a − nWL ,+

b )2 + (nWL ,−
a − nWL ,−

b )2

Re((EGS,+
a − EGS,+

b ))2

+Im((EGS,+
a − EGS,+

b ))2

+Re((EGS,−
a − EGS,−

b ))2

+Im((EGS,−
a − EGS,−

b ))2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/2

.

(29)

Using Eqs. (27)–(29), the LLE can be calculated. Previous
works on the use of LLE formalism in spin VCSELs (e.g.,
[31]) have overlooked the required integration time for numer-
ically sound results. Although the trends and mapping are
qualitatively correct, the quantitative claims (e.g., LLE val-
ues for chaos) are questionable. Recently, this was addressed
in a tolerance analysis of the LLE against integration time
[36]. Figure 2 shows the variation of LLE for the ES and GS
with integration time. For the derivation of Fig. 2, we used
the following parameters: for γn = 1ns−1, γ0 = 400ns−1,
γs = 10ns−1, γp = 20ns−1, α=3, h=1.1995, k = 250ns−1,
P = 0.15128 and η=2.276 . Throughout all the simulations
in this contribution, the value of γa was set to zero to keep up
with the approach followed in [37]. Based on this, we choose
an integration time of 300ns for all subsequent simulations,
which is a fair compromise between computational burden
and accuracy. Regardless of the integration time, the values of
the LLE for the ES and GS differ. We will elaborate on this in
the subsequent analysis.

3.1 Effect of γ21, γs and γp on chaotic dynamics

To study the effect of characteristic parameters of the device,
namely the intra-dot relaxation rate γ21 the normalized gain
coefficient h, the spin relaxation rate γs and the birefringence

Fig. 2 LLE change with integration time for the time trace of
Fig. 4a

rate γp on the dynamics of the output ES and GS intensi-
ties, stability maps in the P-η plane have been constructed.
Figure 3 shows maps of P and η calculated for three different
values of γ21 (10 ns−1, 50 ns−1 and 150 ns−1) for the follow-
ing set of parameters: γn=1ns−1, γ0=400ns−1, γs= 10ns−1,
γp=20ns−1, α=3, k=250ns−1 and h1=1.1995. These are in
the range of previously reported values [38–40]. It is noted that
works [26,40], on the α factor for QD lasers have challenged
conventional practices of using the same value for both ES and
GS emission. Additionally, the reported values for QD lasers
vary from very small [19,41], to very large values [24,28].
For the α factor we choose the value of 3 for GS and 1.5 for
ES, in accordance with previous works [6,27] in the middle
of the range of the reported values for QD lasers.

The maps are quantified by means of LLE as described
above. Schematically this is represented with different colors
associated with the value of the LLE for a given pair of P-η
as shown in the color bar at the top of the maps. The contour
maps are symmetric around P = 0, therefore negative val-
ues of P are omitted. For the case of relatively low ES–GS
coupling strength (γ21=10 ns−1) in Fig. 3a and b there exists
an extended unstable region (LLE > 0) for a broad range of
total pump intensity η. The dynamic behavior of GS and ES
emission exhibit the same kind of dynamics (chaotic behavior
or stability) throughout the P-η plane. This is expected since
both transitions are fed from the same reservoir of carriers.

However, it is noticeable that the amount of nonlinearity
is not identical, in other words the value of LLE for the two
cases is not the exact same. This is evident in Fig. 3a and b,
where the values of LLE for ES and GS emission agree on
the sign but differ on the actual value that is, in the amount of
chaos. This justifies our choice of the LLE method over other
methods commonly used for the study of nonlinearities, e.g.,
bifurcation theory, as LLE can identify and at the same time
quantify chaos. Figure 4a shows the time series for the point
(P ,η)=(0.15128, 2.276) of Fig. 3a and b for which LLE > 0
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Fig. 3 Calculated maps of LLE values in the P-η plane for two-
state QD spin-VCSEL for 3 different values of γ21=[10ns−1,
50ns−1, 150ns−1] for ES (a), (c), (e), and for GS (b), (d), (f).
The color bar at the top corresponds to the LLE values

for both GS and ES emissions for clockwise and anticlock-
wise circular polarization. The difference between ES and GS
emission in terms of amplitude is emphatic. This is expected
as for dual emission QD lasers, when ES mode reaches its
lasing threshold the GS mode saturates [31]. Although, both
GS and ES emission exhibit chaotic behavior with similar (not
identical) LLE values, their time evolution differs. This asym-
metry in the dynamics of the GS and ES related emission is
illustrated in Fig. 4b where the bar charts depict the percent-
age of points of the stability maps for ES and GS emission
that lie within specific LLE intervals. It is interesting to note
that while both ES and GS exhibit similar chaotic behavior,
the amplitude of the GS is suppressed compared to ES when
the injected spin-polarized carriers in the quantum dot are
captured in the ES (and eventually recombined with holes in
the Valence Band (VB)) much faster than they decay in the
GS level. As a result, the lasing occurs primarily from the ES
leading the GS intensity suppression.

Fig. 4 a, c, e) Time series for the point (P, η) =
(0.15128, 2.276) for γn=1ns−1, γ0=400ns−1, γs=10ns−1,
γp=20ns−1, α = 3, h = 1.1995, k = 250ns−1, P = 0.15128
and η = 2.276. b, d, f) Percentage of points of the maps in Fig. 3
having LLE in particular value intervals

In Fig. 3c–f, we explore further the effect of intra-
band relaxation rate of ES to GS, for γ21=50ns−1 and
γ21=150ns−1. Unlike Fig. 3a and b, the chaotic regions in the
P-η plane are now shrunk, in other words chaotic behavior
can be quenched by means of γ21. This is evident in Fig. 4c
and e, where the time series for the same (P ,η)=(0.15128,
2.276) as in Fig. 4a, are plotted along with the distribution of
LLE (Fig. 4d and f). In Fig. 4c, e, both ES and GS emission
is constant (periodic) in time (LLE value close to zero) as a
result of the suppression of the chaotic dynamics induced by
the increase in the intra-dot relaxation rate.

The effect of the birefringence rate γp and the spin relax-
ation rateγs iswell established on the type of dynamics (chaos,
periodicity or stability) [42]. γp and γs can be used to tune
the asymmetry in the details, not the type, of the dynamics of
ES and GS. In Fig. 5, we map the dynamics in the plane of γp

and γs for the point (P ,η)=(0.0513,2.2410) for theES (Fig. 5a)
and GS (Fig. 5b). This point in Fig.3a and b is associated to a
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Fig. 5 a ES γs -γp LLE value maps for two-state QD spin-
VCSEL, b GS γs -γp maps for two-state QD spin-VCSEL for
γn=1 ns−1, γ0=400 ns−1, γs=10 ns−1, γp=20 ns−1, α=3,
k=250ns−1, h=1.1995, γ21=10ns−1, P=0.0513 and η=2.241).
c Percentage of points of the maps in Fig. 5a and b having LLE
in particular value intervals

positive largest Lyapunov exponent. Thus, a point of irregular
dynamical behavior. The purpose of Fig. 5 is to illustrate the
impact of the variation of γs and γp rates to the dynamics of
QD spin-VCSELs. Therefore, we decided to choose a random
point in the P-η plane from Fig. 3a and b (preferably a point
with irregular behavior) to examine if the asymmetry of LLE
values between ES and GS, observed previously in the P-η
plane (Fig. 3a–f), is preserved under the variation of a differ-
ent set of bifurcation parameters. The rest of parameters are
γn=1ns−1, γ0=400ns−1, α=3, k=250ns−1, and h=1.1995.
For this (P ,η) point and the particular set of parameters, the
spin-polarizedQD-VCSEL exhibits stable behavior. Variation
of γp and γs exert nonlinear effects that span the full range
of dynamics from stability to chaos for both ES and GS. Fig-
ure 5c quantifies the effect of γp and γs on the magnitude of
chaos in the ES and GS dynamics. Again, in this case (as in
the previous, where the value of γ21 varied) the amount of
chaos experienced by ES and GS differs quantitatively.

3.2 Effect of h on chaotic dynamics

The effect on the chaotic dynamics of a QD spin-VCSEL
under the variation the normalized gain coefficient is depicted
in Fig. 6. Again, as in Fig. 3, the dynamics are mapped in the
P-η plane. Fig. 6a, c and e is for ES and Fig. 6b, d and f is for
GS. Initially, for a small value of h, (h = 1.016) a broad region
of complex dynamics is observed for both ES and GS in Fig.

Fig. 6 Calculated maps of LLE values in the P − η plane for
two-state QD spin-VCSEL for ES (a, c, e) and for GS (b, d, f) for
h = 1.019 (a, b), h = 1.016 (c, d) and h = 1.1995 (e, f) for the
set of parameters γn = 1 ns−1, γ0 = 400 ns−1, γs = 10 ns−1,
γp = 20 ns−1, γ21 = 150 ns−1, α = 3, and k = 250 ns−1. The
color bar at the top corresponds to the LLE values

6a and b. Although the qualitative dynamical characteristics
of ES and GS are identical, quantitative differences occur as
the LLE value denotes. By increasing the value of h, from
h=1.056 (Fig. 6c and d) to h=1.1995 (Fig. 6e and f) these
regions of chaotic behavior are shrunk dramatically. Again,
the dynamical qualitative symmetry is observed as well as the
quantitative asymmetry between ES and GS. The variation of
h, has a similar (if not identical) trend as γ21 (Fig. 3) in the
dynamics of the device.

The quantitative difference between the chaotic ES and
GS dynamics can be verified also by means of the Correlation
Coefficient (CC) [43]. Figure 7a and b shows the LLE values
of the point P = 0.1724 and η=1.9660 in the plane γ21-h. For
small values of h theLLEvalue is positive, indicating complex
(chaotic) behavior for all values of γ21. As γ21 increases the
device is more stable. Although the dynamics are identical for
ES and GS the dynamical quantitatively asymmetry occurs
once again, as in the previous cases.
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Fig. 7 Calculated LLE maps in the γ21 - h plane for two-state
QD spin-VCSEL for a ES and b GS for the set of parameters
γn = 1 ns−1, γ0 = 400 ns−1, γs = 10 ns−1, γp = 20 ns−1,
α = 3, k = 250 ns−1, P = 0.1724, and η = 1.9660

Fig. 8 Calculated CC value map in the plane γ21 − h for the set
of parameters γn = 1 ns−1, γ0 = 400 ns−1, γs = 10 ns−1, γp =
20 ns−1, α = 3, k = 250 ns−1, P = 0.1724, and η = 1.9660

This behavior, previously decoded by the LLE, is validated
in Fig. 8 where the values of CC are depicted. It is worth
noting that the topographical characteristics of Fig. 7a and b
and Fig. 8 are identical. The small values of CC found in the
chaotic regions indicate that ES and GS are uncorrelated to
each other. In regions of stable operation the CC has values
close to the unity implying that both ES andGS are correlated.

4 QD spin-VCSELs as a platform for reservoir
computing

The uncorrelated dynamics of the ES and GS emission of the
spin QD-VCSELs studied here can be beneficial for Reservoir
Computing (RC).

RC is a brain-inspired computational paradigm that can
address computationally demanding tasks (see for example
[44] the references therein) including speech recognition [45]
and chaotic systems prediction [46]. More relevant to the
scopes of the present study are the RC realizations based

on VCSELs; exploiting the polarization dynamics of con-
ventional VCSELs, Vatin and co-workers [47] demonstrated
superiorRCperformance compared to singlemode laser based
RC systems. The concept of VCSEL based RCwas elaborated
by Guo et al. [48] who used mutually coupled VCSELs for
RC that offer fourfold improvements in information process-
ing rate.

In terms of performance, a photonic RC system is more
efficient when operated ‘at the edge of chaos’ [49,50] in other
words for small LLEvalues [51]. TheLLE formalism is partic-
ularly suited in identifying the areas of weak chaos as depicted
in the stability maps produced here. Additionally, Bogris et al.
[52] showed for a RC system based on a multi-mode Fabry–
Perot laser that the performance is optimized when the modes
are weakly correlated. Our proposed structure is a platform
for tailoring both the amount of chaos and correlation of the
output polarization of the lasing modes (ES and GS) and as
such it is expected that it will prove ideal for reservoir com-
puters.

5 Conclusions

We investigated the impact of the ES lasing on the chaotic
dynamics of a QD spin-VCSELs. We extended the modified
SFMusedpreviously for the studyofGSonlyQDspinVCSEL
to account for ES. The dynamics were studied bymeans of the
LLE as it is most suited for quantification of nonlinearities.
The maps of the dynamics in the plane of the control param-
eters P (pump ellipticity) and η (pump amplitude), exhibit
large areas of instabilities for relatively low values of ES to
GS intra-band, γ21, rates which shrink for larger values of
γ21. A similar behavior is observed when the normalized gain
coefficient, h, increases from low values to larger ones. Inter-
estingly, the dynamics of the ES and GS emissions, although
of the same type throughout the computed LLE maps, differ
in the amount of the nonlinearity and this difference can be
tuned with proper choice of γp and γs . The asymmetry in the
ES and GS emission dynamics was verified using the CC. It
is anticipated that the latter findings will be of high interest
for RC applications.
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dot spin lasers. Physical Review B 82(8), 085,316 (2010)

29. Qasaimeh, O.: Novel closed-form solution for spin-
polarization in quantum dot VCSEL. Opt. Commun. 350,
83–89 (2015)

30. Olejniczak, L., Panajotov, K., Wieczorek, S., Thienpont, H.,
Sciamanna, M.: Intrinsic gain switching in optically injected
quantumdot laser lasing simultaneously from the ground and
excited state. JOSA B 27(11), 2416–2423 (2010)

31. Chlouverakis, K.E., Adams, M.J.: Stability maps of
injection-locked laser diodes using the largest Lyapunov
exponent. Opt. Commun. 216(4–6), 405–412 (2003)

32. Schires, K., Al Seyab, R., Hurtado, A., Korpijarvi, V.M.,
Guina, M., Henning, I.D., Adams, M.J.: Optically-pumped
dilute nitride spin-VCSEL. Opt. Express 20(4), 3550–3555
(2012)

33. Schires, K., Al Seyab, R., Hurtado, A., Korpijärvi, V.M.,
Guina, M., Henning, I.D., Adams, M.J.: Instabilities in
optically-pumped 1300nm dilute nitride spin-VCSELs:
experiment and theory. In: IEEEPhotonicsConference 2012,
pp. 870–871. IEEE (2012)

123



3646 P. Georgiou et al.

34. Alharthi, S.S., Al Seyab, R.K., Henning, I.D., Adams, M.J.:
Simulated dynamics of optically pumped dilute nitride 1300
nm spin vertical-cavity surface-emitting lasers. IET Opto-
electron. 8(2), 117–121 (2014)

35. Skokos, C.: The Lyapunov characteristic exponents and their
computation. In: Souchay, J., Dvorak, R. (eds.) Dynamics of
Small Solar System Bodies and Exoplanets. Lecture Notes
in Physics, vol. 790. Springer, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-04458-8_2

36. Georgiou, P.D., Alexandropoulos, D., Skokos, C.: Study of
the dynamics of spin-polarized vertical cavity surface emit-
ting lasers using largest Lyapunov Exponent. In: 2020 22nd
International Conference on Transparent Optical Networks
(ICTON), pp. 1–3. IEEE (2020)

37. Adams, M.J., Alexandropoulos, D.: Parametric analysis of
spin-polarized VCSELs. IEEE J. Quantum Electron. 45(6),
744–749 (2009)

38. Nizette, M., Sciamanna, M., Gatare, I., Thienpont, H.,
Panajotov, K.: Dynamics of vertical-cavity surface-emitting
lasers with optical injection: a two-mode model approach.
JOSA B 26(8), 1603–1613 (2009)

39. Markus, A., Chen, J., Paranthoen, C., Fiore, A., Platz,
C., Gauthier-Lafaye, O.: Simultaneous two-state lasing in
quantum-dot lasers. Appl. Phys. Lett. 82(12), 1818–1820
(2003)

40. Lingnau, B., Chow, W.W., Schöll, E., Lüdge, K.: Feedback
and injection locking instabilities in quantum-dot lasers: a
microscopically based bifurcation analysis. New J. Phys.
15(9), 093031 (2013)

41. Gerhardt, N.C., Hofmann, M.R.: Spin-controlled vertical-
cavity surface-emitting lasers. Adv. Opt. Tech. 2012,(2012)

42. Zubov, F., Maximov, M., Moiseev, E., Savelyev, A.,
Shernyakov, Y., Livshits, D., Kryzhanovskaya, N., Zhukov,
A.: Observation of zero linewidth enhancement factor at
excited state band in quantum dot laser. Electron. Lett.
51(21), 1686–1688 (2015)

43. Virte, M., Sciamanna,M., Panajotov, K.: Synchronization of
polarization chaos from a free-running VCSEL. Opt. Lett.
41(19), 4492–4495 (2016)

44. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen,
B., Haelterman, M., Massar, S.: Optoelectronic reservoir
computing. Sci. Rep. 2(1), 1–6 (2012)

45. Verstraeten, D., Schrauwen, B., Stroobandt, D.: Reservoir-
based techniques for speech recognition. In: The 2006 IEEE
International Joint Conference on Neural Network Proceed-
ings, pp. 1050–1053. IEEE (2006)

46. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-
free prediction of large spatiotemporally chaotic systems
from data: a reservoir computing approach. Phys. Rev. Lett.
120(2), 024102 (2018)

47. Vatin, J., Rontani, D., Sciamanna, M.: Enhanced perfor-
mance of a reservoir computer using polarization dynamics
in VCSELs. Opt. Lett. 43(18), 4497–4500 (2018)

48. Guo, X.X., Xiang, S.Y., Zhang, Y.H., Lin, L., Wen, A.J.,
Hao, Y.: Four-channels reservoir computing based on polar-
ization dynamics in mutually coupled VCSELs system. Opt.
Express 27(16), 23293–23306 (2019)

49. Bertschinger, N., Natschläger, T.: Real-time computation at
the edge of chaos in recurrent neural networks. Neural Com-
put. 16(7), 1413–1436 (2004)

50. Cai, Q., Guo, Y., Li, P., Bogris, A., Shore, K.A., Zhang, Y.,
Wang, Y.: Modulation format identification in fiber commu-
nications using single dynamical node-based photonic reser-
voir computing. Photonics Res. 9(1), B1–B8 (2021)

51. Sprott, J.: Chaotic dynamics on large networks. Chaos Inter-
discip. J. Nonlinear Sci. 18(2), 023135 (2008)

52. Bogris, A., Mesaritakis, C., Deligiannidis, S., Li, P.: Fabry-
Perot lasers as enablers for parallel reservoir computing.
IEEE J. Sel. Topics Quantum Electron. 27(2), 1–7 (2020)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1007/978-3-642-04458-8_2

	Effect of excited state lasing on the chaotic dynamics of spin QD-VCSELs
	Abstract
	1 Introduction
	2 SFM model accounting for ES
	2.1 Modification of the SFM model
	2.2 Normalization of the modified SFM

	3 Results and discussion
	3.1 Effect of γ21, γs and γp on chaotic dynamics
	3.2 Effect of h on chaotic dynamics

	4 QD spin-VCSELs as a platform for reservoir computing
	5 Conclusions
	Acknowledgements
	References




